Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing

Jacob A. VanderBurgh, Thomas N. Corso, Stephen L. Levy, Harold G. Craighead CyteQuest, Inc, Ithaca, NY

Objective: Scalable transfection of T cells for cell therapy manufacturing

- Viral vectors have enabled CAR-T cell therapies, but drawbacks include:
 - High cost and complex manufacturing
 - Immunogenicity and potential for insertional mutagenesis
 - Incompatibility with CRISPR/Cas9 mediated gene editing
- Electroporation enables non-viral transfection of primary cells, but:
 - Electroporation typically requires difficult empirical optimization
 - Standard electroporation methods are incompatible with automation and large-scale cell manufacturing methods required for cell therapies
- We developed a microfluidic electroporation platform capable of rapid and reproducible electroporation that can seamlessly scale delivery from the research to clinical scale

Overview of electroporation flow chip

Schematic side view

Channel height and electrode gap: 80 µm

Schematic Top view

Channel width and electrode width: 2, 10, or 20 mm

- Our platform incorporates a single-use, continuous-flow, microfluidic channel
- The thin channel height (80 µm)
 - Ensures each cell is subjected the same electric field and chemical environment to enable reproducible electroporation
 - Requires relatively low voltage amplitude to achieve electric field strength required to transiently open plasma membrane pores
- The channel width is chosen to achieve the desired experimental throughput
 - Increasing the width (ie. from 2 to 10 mm) increases experimental throughput without changing electric field experienced by the cells
- Flexible electronics permit delivery of any arbitrary electrical waveform
 - Due to low-voltage operation, we are not limited to simple square or exponential pulses
 - Waveforms can be tailored to a particular cell and cargo type to enhance transfection performance

Photograph of a flow cell with three sets of independently addressable electrodes

Example waveform

Plot depicting a bipolar rectangular waveform with frequency *f*, duration *t*, and voltage amplitude V

N = 3

https://cytequest.com/ jvanderburgh@cytequest.com

Cyte Juest®

High performance transfection of human primary T cells with CAR and CRISPR RNPs

Delivery of mRNA or plasmid DNA encoding HER2-CAR to primary human T cells

Plasmid DNA encoding CAR ত 100 ন 60

<u>mRNA CAR</u> 92% CAR expression 91% viability ratio

Plasmid DNA CAR 62% CAR expression 64% viability ratio

Delivery of CRISPR ribonucleoproteins to primary human T cells

Primary T cells with CRISPR RNPs: 5% KNOCKOOWN 88% viability ratio

Conclusions

- CyteQuest offers two systems, for optimization and manufacturing, that use the same proprietary flow electroporation chip to deliver identical electroporation performance
- Our demonstrated capabilities include:
 - Efficient and flexible transfection of hard-to-transfect primary cells
 - Rapid optimization using small volumes of material at the research scale
 - Automated experimentation for efficient and easy experimentation
 - Seamless scaling from research to clinical scales by scaling the channel width, cell concentration, and fluid flow rate

Acknowledgements

This work was supported by a Phase I SBIR grant from the NIH. This work was performed in part at the Cornell NanoScale Facility, an NNCI member supported by NSF Grant NNCI-2025233.